Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0222323, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38497645

RESUMO

An uncharacterized gene encoding a glycoside hydrolase family 43-like enzyme from Clostridium boliviensis strain E-1 was identified from genomic sequence data, and the encoded enzyme, CbE1Xyn43-l, was produced in Escherichia coli. CbE1Xyn43-l (52.9 kDa) is a two-domain endo-ß-xylanase consisting of a C-terminal CBM6 and a GH43-like catalytic domain. The positions of the catalytic dyad conserved in GH43, the catalytic base (Asp74), and proton donor (Glu240) were identified in alignments including GH43-enzymes of known 3D-structure from different subfamilies. CbE1Xyn43-l is active at pH 7.0-9.0, with optimum temperature at 65°C, and a more than 7 days' half-life in irreversible deactivation studies at this temperature. The enzyme hydrolyzed birchwood xylan, quinoa stalks glucuronoarabinoxylan, and wheat arabinoxylan with xylotriose and xylotetraose as major hydrolysis products. CbE1Xyn43-l also released xylobiose from pNPX2 with low turnover (kcat of 0.044 s-1) but was inactive on pNPX, showing that a degree of polymerization of three (DP3) was the smallest hydrolyzable substrate. Divalent ions affected the specific activity on xylan substrates, which dependent on the ion could be increased or decreased. In conclusion, CbE1Xyn43-l from C. boliviensis strain E-1 is the first characterized member of a large group of homologous hypothetical proteins annotated as GH43-like and is a thermostable endo-xylanase, producing xylooligosaccharides of high DP (xylotriose and xylotetraose) producer. IMPORTANCE: The genome of Clostridium boliviensis strain E-1 encodes a number of hypothetical enzymes, annotated as glycoside hydrolase-like but not classified in the Carbohydrate Active Enzyme Database (CAZy). A novel thermostable GH43-like enzyme is here characterized as an endo-ß-xylanase of interest in the production of prebiotic xylooligosaccharides (XOs) from different xylan sources. CbE1Xyn43-l is a two-domain enzyme composed of a catalytic GH43-l domain and a CBM6 domain, producing xylotriose as main XO product. The enzyme has homologs in many related Clostridium strains which may indicate a similar function and be a previously unknown type of endo-xylanase in this evolutionary lineage of microorganisms.


Assuntos
Glucuronatos , Glicosídeo Hidrolases , Oligossacarídeos , Xilanos , Xilanos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato , Clostridium/genética , Clostridium/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Hidrólise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio
2.
Glycobiology ; 34(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38271624

RESUMO

The marine environment, contains plentiful renewable resources, e.g. macroalgae with unique polysaccharides, motivating search for enzymes from marine microorganisms to explore conversion possibilities of the polysaccharides. In this study, the first GH17 glucanosyltransglycosylase, MlGH17B, from a marine bacterium (Muricauda lutaonensis), was characterized. The enzyme was moderately thermostable with Tm at 64.4 °C and 73.2 °C, but an activity optimum at 20 °C, indicating temperature sensitive active site interactions. MlGH17B uses ß-1,3 laminari-oligosaccharides with a degree of polymerization (DP) of 4 or higher as donors. Two glucose moieties (bound in the aglycone +1 and +2 subsites) are cleaved off from the reducing end of the donor while the remaining part (bound in the glycone subsites) is transferred to an incoming ß-1,3 glucan acceptor, making a ß-1,6-linkage, thereby synthesizing branched or kinked oligosaccharides. Synthesized oligosaccharides up to DP26 were detected by mass spectrometry analysis, showing that repeated transfer reactions occurred, resulting in several ß-1,6-linked branches. The modeled structure revealed an active site comprising five subsites: three glycone (-3, -2 and -1) and two aglycone (+1 and +2) subsites, with significant conservation of substrate interactions compared to the only crystallized 1,3-ß-glucanosyltransferase from GH17 (RmBgt17A from the compost thriving fungus Rhizomucor miehei), suggesting a common catalytic mechanism, despite different phylogenetic origin, growth environment, and natural substrate. Both enzymes lacked the subdomain extending the aglycone subsites, found in GH17 endo-ß-glucanases from plants, but this extension was also missing in bacterial endoglucanases (modeled here), showing that this feature does not distinguish transglycosylation from hydrolysis, but may rather relate to phylogeny.


Assuntos
Flavobacteriaceae , Oligossacarídeos , Filogenia , Oligossacarídeos/química , Polissacarídeos , Especificidade por Substrato
3.
Biotechnol Biofuels Bioprod ; 16(1): 135, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697400

RESUMO

Sustainably produced renewable biomass has the potential to replace fossil-based feedstocks, for generation of biobased fuels and chemicals of industrial interest, in biorefineries. In this context, seaweeds contain a large fraction of carbohydrates that are a promising source for enzymatic and/or microbial biorefinery conversions. The thermoanaerobe Thermoanaerobacterium AK17 is a versatile fermentative bacterium producing ethanol, acetate and lactate from various sugars. In this study, strain AK17 was engineered for more efficient production of ethanol by knocking out the lactate and acetate side-product pathways. This was successfully achieved, but the strain reverted to acetate production by recruiting enzymes from the butyrate pathway. Subsequently this pathway was knocked out and the resultant strain AK17_M6 could produce ethanol close to the maximum theoretical yield (90%), leading to a 1.5-fold increase in production compared to the wild-type strain. Strain AK17 was also shown to successfully ferment brown seaweed hydrolysate from Laminaria digitata to ethanol in a comparatively high yield of 0.45 g/g substrate, with the primary carbon sources for the fermentations being mannitol, laminarin-derived glucose and short laminari-oligosaccharides. As strain AK17 was successfully engineered and has a wide carbohydrate utilization range that includes mannitol from brown seaweed, as well as hexoses and pentoses found in both seaweeds and lignocellulose, the new strain AK17_M6 obtained in this study is an interesting candidate for production of ethanol from both second and third generations biomass.

4.
Sci Rep ; 11(1): 9586, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953310

RESUMO

Thermophilic organisms are extensively studied in industrial biotechnology, for exploration of the limits of life, and in other contexts. Their optimal growth at high temperatures presents a challenge for the development of genetic tools for their genome editing, since genetic markers and selection substrates are often thermolabile. We sought to develop a thermostable CRISPR-Cas9 based system for genome editing of thermophiles. We identified CaldoCas9 and designed an associated guide RNA and showed that the pair have targetable nuclease activity in vitro at temperatures up to 65 °C. We performed a detailed characterization of the protospacer adjacent motif specificity of CaldoCas9, which revealed a preference for 5'-NNNNGNMA. We constructed a plasmid vector for the delivery and use of the CaldoCas9 based genome editing system in the extreme thermophile Thermus thermophilus at 65 °C. Using the vector, we generated gene knock-out mutants of T. thermophilus, targeting genes on the bacterial chromosome and megaplasmid. Mutants were obtained at a frequency of about 90%. We demonstrated that the vector can be cured from mutants for a subsequent round of genome editing. CRISPR-Cas9 based genome editing has not been reported previously in the extreme thermophile T. thermophilus. These results may facilitate development of genome editing tools for other extreme thermophiles and to that end, the vector has been made available via the plasmid repository Addgene.


Assuntos
Genoma Bacteriano , Mutação , Thermus thermophilus/genética , Sistemas CRISPR-Cas , Edição de Genes , Temperatura
5.
Sci Rep ; 10(1): 5853, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246087

RESUMO

The importance of the gut microbiota in human health has led to an increased interest to study probiotic bacteria. Fermented food is a source of already established probiotics, but it also offers an opportunity to discover new taxa. Four strains of Weissella sp. isolated from Indian fermented food have been genome sequenced and classified into the species W. cibaria based on whole-genome phylogeny. The genome of W. cibaria strain 92, known to utilise xylooligosaccharides and produce lactate and acetate, was analysed to identify genes for oligosaccharide utilisation. Clusters including genes involved in transportation, hydrolysis and metabolism of xylooligosaccharides, arabinooligosaccharides and ß-glucosides were identified. Growth on arabinobiose and laminaribiose was detected. A 6-phospho-ß-glucosidase clustered with a phosphotransferase system was found upregulated during growth on laminaribiose, indicating a mechanism for laminaribiose utilisation. The genome of W. cibaria strain 92 harbours genes for utilising the phosphoketolase pathway for the production of both acetate and lactate from pentose and hexose sugars but lacks two genes necessary for utilising the pentose phosphate pathway. The ability of W. cibaria strain 92 to utilise several types of oligosaccharides derived from dietary fibres, and produce lactate and acetate makes it interesting as a probiotic candidate for further evaluation.


Assuntos
Fibras na Dieta/metabolismo , Oligossacarídeos/metabolismo , Weissella/genética , Arabinose/metabolismo , Genoma Bacteriano/genética , Redes e Vias Metabólicas/genética , Peptidoglicano/metabolismo , Filogenia , Weissella/classificação , Weissella/metabolismo , Sequenciamento Completo do Genoma
6.
Microbiologyopen ; 7(1)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29045010

RESUMO

Rhodothermus marinus, a marine aerobic thermophile, was first isolated from an intertidal hot spring in Iceland. In recent years, the R. marinus strain PRI 493 has been genetically modified, which opens up possibilities for targeted metabolic engineering of the species, such as of the carotenoid biosynthetic pathway. In this study, the carotenoids of the R. marinus type-strain DSM 4252T , strain DSM 4253, and strain PRI 493 were characterized. Bioreactor cultivations were used for pressurized liquid extraction and analyzed by ultra-high performance supercritical fluid chromatography with diode array and quadropole time-of-flight mass spectrometry detection (UHPSFC-DAD-QTOF/MS). Salinixanthin, a carotenoid originally found in Salinibacter ruber and previously detected in strain DSM 4253, was identified in all three R. marinus strains, both in the hydroxylated and nonhydroxylated form. Furthermore, an additional and structurally distinct carotenoid was detected in the three strains. MS/MS fragmentation implied that the mass difference between salinixanthin and the novel carotenoid structure corresponded to the absence of a 4-keto group on the ß-ionone ring. The study confirmed the lack of carotenoids for the strain SB-71 (ΔtrpBΔpurAcrtBI'::trpB) in which genes encoding two enzymes of the proposed pathway are partially deleted. Moreover, antioxidant capacity was detected in extracts of all the examined R. marinus strains and found to be 2-4 times lower for the knock-out strain SB-71. A gene cluster with 11 genes in two operons in the R. marinusDSM 4252T genome was identified and analyzed, in which several genes were matched with carotenoid biosynthetic pathway genes in other organisms.


Assuntos
Carotenoides/análise , Rhodothermus/química , Antioxidantes/análise , Antioxidantes/química , Organismos Aquáticos/química , Organismos Aquáticos/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Carotenoides/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Rhodothermus/crescimento & desenvolvimento
7.
Microb Cell Fact ; 16(1): 232, 2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29274637

RESUMO

BACKGROUND: The gene encoding a thermostable cellulase of family 12 was previously isolated from a Rhodothermus marinus through functional screening. CelA is a protein of 260 aminoacyl residues with a 28-residue amino-terminal signal peptide. Mature CelA was poorly synthesized in some Escherichia coli strains and not at all in others. Here we present an alternative approach for its heterologous production as a secreted polypeptide in Streptomyces. RESULTS: CelA was successfully over-expressed as a secreted polypeptide in Streptomyces lividans TK24. To this end, CelA was fused C-terminally to the secretory signal peptide of the subtilisin inhibitor protein (Sianidis et al. in J Biotechnol. 121: 498-507, 2006) from Streptomyces venezuelae and a new cloning strategy developed. Optimal growth media and conditions that stall biomass production promote excessive CelA secretion. Under optimal growth conditions in nutrient broth medium, significant amounts of mature CelA (50-90 mg/L or 100-120 mg/g of dry cell weight) are secreted in the spent growth media after 7 days. A protocol to rapidly purify CelA to homogeneity from culture supernatants was developed and specific anti-sera raised against it. Biophysical, biochemical and immmuno-detection analyses indicate that the enzyme is intact, stable and fully functional. CelA is the most thermostable heterologous polypeptide shown to be secreted from S. lividans. CONCLUSION: This study further validates and extends the use of the S. lividans platform for production of heterologous enzymes of industrial importance and extends it to active thermostable enzymes. This study contributes to developing a platform for poly-omics analysis of protein secretion in S. lividans.


Assuntos
Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Expressão Gênica , Rhodothermus/enzimologia , Streptomyces lividans/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Celulase/química , Celulase/genética , Estabilidade Enzimática , Temperatura Alta , Transporte Proteico , Rhodothermus/genética , Streptomyces lividans/metabolismo
8.
Carbohydr Polym ; 156: 1-8, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27842803

RESUMO

The thermophile Rhodothermus marinus produces extracellular polysaccharides (EPSs) that forms a distinct cellular capsule. Here, the first data on EPS production in strains DSM4252T and MAT493 are reported and compared. Cultures of both strains, supplemented with either glucose, sucrose, lactose or maltose showed that the EPS were produced both in the exponential and stationary growth phase and that production in the exponential phase was boosted by maltose supplementation, while stationary phase production was boosted by lactose. The latter was higher, resulting in 8.8 (DSM4252T) and 13.7mg EPS/g cell dry weight (MAT493) in cultures in marine broth supplemented with 10g/L lactose. The EPSs were heteropolymeric with an average molecular weight of 8×104Da and different monosaccharides, including arabinose and xylose. FT-IR spectroscopy revealed presence of hydroxyl, carboxyl, N-acetyl, amine, and sulfate ester groups, showing that R. marinus produces unusual sulfated EPS with high arabinose and xylose content.


Assuntos
Polissacarídeos Bacterianos/biossíntese , Rhodothermus/metabolismo , Amino Açúcares/química , Arabinose/química , Glucose/metabolismo , Lactose/metabolismo , Maltose/metabolismo , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Rhodothermus/química , Rhodothermus/classificação , Sacarose/metabolismo , Ácidos Urônicos/química , Xilose/química
9.
J Biotechnol ; 199: 21-2, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25680930

RESUMO

Streptomyces lividans TK24 is the standard host for the heterologous expression of a number of different proteins and antibiotic-synthesizing enzymes. As such, it is often used as an experimental microbial cell factory for the production of secreted heterologous proteins including human cytokines and industrial enzymes, and of several antibiotics. It accepts methylated DNA and is an ideal Streptomyces cloning system. Here, we report the complete genome sequence of S. lividans TK24 that includes a plasmid-less genome of 8.345Mbp (72.24% G+C content).


Assuntos
Genoma Bacteriano/genética , Streptomyces lividans/genética , Proteínas de Bactérias/genética , Dados de Sequência Molecular , Streptomyces/genética
10.
Int J Syst Evol Microbiol ; 63(Pt 3): 1149-1154, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22771681

RESUMO

A thermophilic, aerobic, Gram-stain-negative, filamentous bacterium, strain PRI-4131(T), was isolated from an intertidal hot spring in Isafjardardjup, NW Iceland. The strain grew chemo-organotrophically on various carbohydrates. The temperature range for growth was 40-65 °C (optimum 55 °C), the pH range was pH 6.5-9.0 (optimum pH 7.0) and the NaCl range was 0-3 % (w/v) (optimum 0.5 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PRI-4131(T) represented a distinct lineage within the class Caldilineae of the phylum http://dx.doi.org/10.1601/nm.550Chloroflexi. The highest levels of sequence similarity, about 91 %, were with Caldilinea aerophila STL-6-O1(T) and Caldilinea tarbellica D1-25-10-4(T). Fermentative growth was not observed for strain PRI-4131(T), which, in addition to other characteristics, distinguished it from the two Caldilinea species. Owing to both phylogenetic and phenotypic differences from the described members of the class Caldilineae, we propose to accommodate strain PRI-4131(T) in a novel species in a new genus, Litorilinea aerophila gen. nov., sp. nov. The type strain of Litorilinea aerophila is PRI-4131(T) ( = DSM 25763(T)  = ATCC BAA-2444(T)).


Assuntos
Chloroflexi/classificação , Fontes Termais/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Chloroflexi/genética , Chloroflexi/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , Islândia , Dados de Sequência Molecular , Fosfolipídeos/análise , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Mol Ecol Resour ; 10(3): 533-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-21565052

RESUMO

We report the development of new PCR assays and loading panels for the Atlantic salmon using 15 microsatellite loci. A total of 8, 3 and 4 loci were coamplified in three separate PCRs using labelled primers and loaded on the ABI DNA analyzer in two separate panels. Amplified alleles were clearly typed, and easily interpretable results were obtained. The method was successfully applied in different laboratories, even when different types of DNA polymerase were employed. The method is useful for analysing paternity, population genetics and conservation as well as for selective breeding programmes.

12.
BMC Microbiol ; 9: 250, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19961579

RESUMO

BACKGROUND: The bacteriology during storage of the North-Atlantic cod has been investigated for the past decades using conventional cultivation strategies which have generated large amount of information. This paper presents a study where both conventional cultivation and cultivation independent approaches were used to investigate the bacterial succession during storage of cod loins at chilled and superchilled temperatures. RESULTS: Unbrined (0.4% NaCl) and brined (2.5% NaCl) cod loins were stored at chilled (0 degrees C) and superchilled (-2 and -3.6 degrees C) temperatures in air or modified atmosphere (MA, % CO2/O2/N2: 49.0 +/- 0.6/7.4 +/- 0.2/43.7 +/- 0.4). Discrepancy was observed between cultivation enumeration and culture independent methods where the former showed a general dominance of Pseudomonas spp. (up to 59%) while the latter showed a dominance of Photobacterium phosphoreum (up to 100%).Gas chromatography-mass spectrophotometry (GC-MC) showed that trimethylamine was the most abundant volatile in mid- and late storage periods. Terminal restriction polymorphism (t-RFLP) analysis showed that the relative abundance of P. phosphoreum increased with storage time. CONCLUSION: The present study shows the bacteriological developments on lightly salted or non-salted cod loins during storage at superchilled temperatures. It furthermore confirms the importance of P. phosphoreum as a spoilage organism during storage of cod loins at low temperatures using molecular techniques. The methods used compensate each other, giving more detailed data on bacterial population developments during spoilage.


Assuntos
Temperatura Baixa , Microbiologia de Alimentos , Gadus morhua/microbiologia , Alimentos Marinhos/microbiologia , Animais , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Conservação de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas , Photobacterium/genética , Photobacterium/isolamento & purificação , Polimorfismo de Fragmento de Restrição , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...